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Abstract. In light of strong encouragement for disaster man-
agers to use climate services for flood preparation, we ques-
tion whether seasonal rainfall forecasts should indeed be
used as indicators of the likelihood of flooding. Here, we in-
vestigate the primary indicators of flooding at the seasonal
timescale across sub-Saharan Africa. Given the sparsity of
hydrological observations, we input bias-corrected reanaly-
sis rainfall into the Global Flood Awareness System to iden-
tify seasonal indicators of floodiness. Results demonstrate
that in some regions of western, central, and eastern Africa
with typically wet climates, even a perfect tercile forecast
of seasonal total rainfall would provide little to no indica-
tion of the seasonal likelihood of flooding. The number of
extreme events within a season shows the highest correla-
tions with floodiness consistently across regions. Otherwise,
results vary across climate regimes: floodiness in arid regions
in southern and eastern Africa shows the strongest correla-
tions with seasonal average soil moisture and seasonal total
rainfall. Floodiness in wetter climates of western and central
Africa and Madagascar shows the strongest relationship with
measures of the intensity of seasonal rainfall. Measures of
rainfall patterns, such as the length of dry spells, are least re-
lated to seasonal floodiness across the continent. Ultimately,
identifying the drivers of seasonal flooding can be used to
improve forecast information for flood preparedness and to
avoid misleading decision-makers.

1 Introduction

Humanitarians have been investing significant attention and
resources in the uptake and use of climate services to inform
their work in disaster risk management. For example, disaster
managers regularly participate in Regional Climate Outlook
forums and climate service partnerships (Hewitt et al., 2012;
ICPAC, 2016; Mwangi et al., 2014). While many early warn-
ing systems focus on short-term hydrological flood warn-
ings, these climate service initiatives promote the use of fore-
casts of seasonal total rainfall. The use of such forecasts
has yielded mixed results when used to prepare for height-
ened flood risk in Africa, such as prepositioning flood relief
items (Braman et al., 2013) and evacuating vulnerable people
(Anon, 2016). In this article we question whether seasonal
rainfall forecasts have been overpromoted for their useful-
ness in flood preparation.

To clarify whether seasonal total rainfall forecasts indeed
indicate increased risk of flooding, we identify the dominant
indicators of seasonal flooding in different locations of sub-
Saharan Africa. In many locations, it is likely that total rain-
fall is not the dominant driver, and other seasonal descriptors
would give a better indication of the risk of flood hazards.
Cumulative rainfall is not the dominant flood-generating pro-
cess for floods in most river basins in the United States
(Berghuijs et al., 2016), and monthly total rainfall has not
been shown to be a good indicator of regional river “flood-
iness”, or the percentage of regional rivers with extreme
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flooding (Stephens et al., 2015). We provide further discus-
sion of “floodiness” in Sect. 2.2.

In the context of sub-Saharan Africa, we quantify the re-
lationship between seasonal total rainfall and floodiness, and
explore whether there might be alternative variables with a
stronger relationship with floodiness at the seasonal level. In
each river basin, the catchment size and the climate regime
will affect the influence of hydraulic routing, soil dynam-
ics, and precipitation patterns; we therefore identify which
hydrometeorological variables are most related to seasonal
flood risk in each location. We investigate the association be-
tween seasonal percentage floodiness and seasonal total rain-
fall, as well as the relationship with 14 other variables and
their combinations.

2 Methods

Given the scarcity of hydrological data available for many
parts of Africa, we offer an alternative methodology to that
used by Berghuijs et al. (2016) for assessing the indicators of
flood intensity and frequency in a region. Rainfall estimates
from ERA-Interim Land (Balsamo et al., 2015) are used to
force the Global Flood Awareness System, a global hydro-
logical model (Alfieri et al., 2013). We calculate anomaly
correlations between rainfall input and the predicted flood-
ing, which is defined as the proportion of river cells that
has extreme discharge in a region in a given time period
(Stephens et al., 2015). We repeat this analysis with the 14
alternative variables, and develop a generalized linear model
(glm) to identify which combinations of variables provided
the greatest indication of flood hazard in each region.

Our methodology depends on the reanalysis for a clima-
tology of rainfall and focuses on the hydrological model to
estimate the consequences of this rainfall for river flows.
This approach is not limited by a patchy observational net-
work, and results can be compared across regions to inform
regional policies. While the rainfall has been bias-corrected
with observations, we would encourage the replication of this
methodology using local rainfall observations for more de-
tailed study of the local indicators of floodiness.

2.1 Rainfall

To calculate the rainfall indices, we use daily gridded reanal-
ysis rainfall estimates from 1980 to 2010. The rainfall esti-
mates are 24 h totals from the ERA-Interim Land reanalysis,
which is adjusted from ERA-Interim calibrated using GPCP
v2.1 data (Balsamo et al., 2015). Due to patchy observational
networks, uncertainties in precipitation datasets over Africa
are large (Sylla et al., 2013), and this bias correction was
shown to improve the performance of river discharge sim-
ulations from ERA-Interim Land over Africa (Balsamo et
al., 2015). The soil moisture estimates are also taken from
the ERA-Interim Land dataset.

The area of study we have selected is sub-Saharan Africa,
16◦ N–35◦ S, 17◦W–52◦ E. Because flooding primarily hap-
pens during the wet seasons, we applied a dry mask by elim-
inating all 3-month seasons that have an average of less than
15 % of the total annual rainfall and also less than 50 cm
of rainfall in that season (Mason et al., 1999). To calculate
seasonal total rainfall, we sum the daily rainfall estimates
for each overlapping 3-month season (JFM, FMA, etc.) over
a 2.5◦ grid box, as this is the resolution of many seasonal
forecasting products from the Global Producing Centres for
Long-Range Forecasts (Barnston et al., 2003; WMO, 2017).

2.2 Flooding

We use daily rainfall from ERA-Interim Land to drive a
hydrological model to estimate river discharge. The system
used here is the Global Flood Awareness System (GloFAS),
which is comprised of a HTESSEL land surface model to
generate surface and subsurface runoff and a Lisflood model
to complete the routing and groundwater flows at a 0.1◦ reso-
lution for the entire global land surface (Alfieri et al., 2013).
In this study we focus on river flooding only; therefore, we
only consider GloFAS river grid points which have a greater
than 1000 km2 upstream basin area. These river pixels are
aggregated to the 2.5◦ resolution to match the rainfall scale.

There are several ways to define whether a location experi-
enced “flooding”, which is the variable of interest to the dis-
aster manager. Here, we define flooding according to the re-
turn period of the discharge, such that extreme floods happen
at approximately the same frequency throughout the study
area. We focus on the 1 in 5 and 1 in 50-year events; these
return periods are defined by fitting a Gumbel extreme value
distribution to the daily flows (Alfieri et al., 2013).

To understand the magnitude of flooding in a 2.5◦ grid
box, we calculate “floodiness” as defined in Stephens et
al. (2015). Percentage floodiness is the percent of river pixels
that have at least 1 day of flooding above the return period,
and duration floodiness is the number of pixel days that have
flooding during that season. Our results were very similar be-
tween percentage and duration floodiness; therefore, duration
floodiness is not shown here.

2.3 Predictor variables

While seasonal total rainfall has demonstrated some pre-
dictability in this part of the world (Barnston et al., 2010b;
Weisheimer and Palmer, 2014), there are other variables that
might be predicted at the seasonal level: frequency of ex-
treme events within a season, sub-seasonal rainfall patterns,
soil moisture, and rainfall intensity. Here, we investigate
whether variables in each of those categories could serve as
a better indicator of flood risk in sub-Saharan Africa. In ad-
dition to seasonal total rainfall, we calculated 14 predictor
variables at the seasonal level. These are defined as follows.

Hydrol. Earth Syst. Sci., 21, 4517–4524, 2017 www.hydrol-earth-syst-sci.net/21/4517/2017/



E. Coughlan de Perez et al.: Should seasonal rainfall forecasts be used for flood preparedness? 4519

Extreme events within a season

– 1 day above 95th: number of days in the season during
which daily precipitation is greater than the 95th per-
centile of daily precipitation of the entire time series.

– 1 day above 99th: number of days in the season during
which daily precipitation is greater than the 99th per-
centile of daily precipitation of the entire time series.

– 3 days above 75th: number of 3-day events in the sea-
son during which 3-day precipitation is greater than the
75th percentile of 3-day precipitation of the entire time
series.

– 3 days above 99th: number of 3-day events in the sea-
son during which 3-day precipitation is greater than the
99th percentile of 3-day precipitation of the entire time
series.

– 5 days above 99th: number of 5-day events in the sea-
son during which 5-day precipitation is greater than the
99th percentile of 5-day precipitation of the entire time
series.

Patterns of rainfall within a season

– Rainy days: seasonal count of the number of days in
which daily precipitation is greater than 1 mm (Sillmann
et al., 2013).

– Mean wet-spell length: average length of all wet spells
in that season, where a wet spell is defined as the
length of consecutive days in which daily precipitation
is greater than 1 mm.

– Median dry-spell length: median length of all dry spells
in that season, where a dry spell is defined as the length
of consecutive days in which daily precipitation is less
than 1 mm.

– Dry-spell autocorrelation: Spearman rank lag-1 auto-
correlation of successive dry-spell lengths (Schleiss and
Smith, 2016).

– 3-day autocorrelation: Spearman rank lag-3 autocorre-
lation of daily rainfall amounts.

Soil moisture and intensity

– Soil moisture: volumetric soil water layer 1: top soil
layer 0–7 cm. Average daily soil moisture for the sea-
son in kgm−3.

– Intensity: total seasonal rainfall divided by the number
of rainy days (see the definition above).

– Contribution of extremes: total rainfall falling in days of
the 95th percentile or higher, divided by total seasonal
rainfall (Alexander et al., 2013).

– Burstiness 15 day: burstiness as defined in Schleiss and
Smith (2016): σµ−µ

σµ+µ
, where µ is the average time be-

tween a specific amount of rainfall (interamount time),
held at 15 days, and σ is the standard deviation of inter-
amount times.

2.4 Comparison

We examine whether anomalously high values of these
variables correlate with greater floodiness. Using seasonal
anomalies for each variable, we calculate the Spearman rank
correlation between the rainfall anomalies and floodiness at
every grid point, as the data are not normally distributed. To
assess our confidence in these results, we bootstrap the time
series to generate 1000 replicates using a block bootstrap of
five seasons. If less than 5 % of the rank correlations of these
bootstrapped replicates have an opposite sign to the original
result, we have confidence in our result. Only results with
this level of confidence are plotted in the figures.

Basin hydrology can also lead to complex relationships
between rainfall and flooding. We therefore explore the cor-
relation between basin-level rainfall with basin-level flood-
iness. We average the rainfall variable and floodiness vari-
able across food producing units (FPUs) (Cai and Rosegrant,
2002), which are defined by a combination of hydrological
basins and geopolitical regions and are therefore relevant for
decision-making purposes. We apply a dry mask for an entire
FPU if more than half of the grid points in the FPU are in a
dry season. With these aggregated results, we then apply the
same correlation methods as for the grid points above.

Lastly, we fit a generalized linear model (glm) to three of
the predictor variables from different categories that showed
improvements in correlation relative to seasonal total rainfall.
For the dependent variable, we use a binary dataset indicating
the occurrence or not of floodiness above the 50-year return
period. The model uses a binomial distribution with a logit
link, and uses 10-fold cross-validation to fit the glm. We se-
lect the most parsimonious model within 1 standard error of
the model with the minimum standard error, using the glmnet
package for R (Friedman et al., 2010).

3 Results and discussion

Three-month seasonal total rainfall anomalies show signif-
icant correlation with floodiness in several regions (Fig. 1).
The relationship is weakest in western and central Africa, and
also weakens as flood severity increases.

When the rainfall and floodiness are aggregated by FPU
and then correlated, the correlations improve in almost all
locations, suggesting that seasonal total rainfall forecasts for
FPUs (Fig. 1c and d) might be of greater use than grid-box
forecasts (Fig. 1a and b) as a predictor of flood hazard. Dif-
ferent regional forecast aggregations could also be explored
to determine whether this can be further optimized.
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Figure 1. Anomaly rank correlations between seasonal total rainfall
and percentage floodiness (Stephens et al., 2015) at the 5-year (a)
and 50-year (b) return periods. Anomaly rank correlations between
seasonal total rainfall for a 2.5◦ gridded food producing unit (FPU)
and floodiness for that FPU at the 5-year (c) and 50-year (d) re-
turn periods. Correlations are only shown here if more than 95 %
of all boostrapped replicates agreed on the sign of the result. The
increase in probability of floodiness above the 5-year return period
conditional on seasonal total rainfall falling in the top tercile (e),
expressed as the difference in probability relative to climatology.

While the correlations are significant in many regions,
there is considerable variation in floodiness that remains un-
explained by this variable. To demonstrate this, we calculate
the probability of flooding (floodiness greater than 0) condi-
tional on seasonal rainfall being in the top tercile of the dis-
tribution, which is the focus of many seasonal forecasts. Ulti-
mately, even if a top-tercile rainfall forecast were given with
100 % certainty, it would represent only a small increase in
the probability of flooding relative to climatology (Fig. 1e).

In Figs. 2–4 we display results from three different sets of
possible predictor variables. In Fig. 2 we plot the anomaly
rank correlations with floodiness for five different measures
of extreme precipitation events within a season. None of
these rainfall variables are a better predictor of floodiness
in all locations (Fig. 2, second row); however, the number
of rain events above the 99th percentile (1-, 3-, and 5-day
events) tend to outperform seasonal total rainfall in the areas
of western and central Africa (where seasonal total rainfall
had the weakest correlations; see Fig. 1).

Next, we analyzed five different measures of rainfall pat-
terns within a season, including the length of dry spells and
wet spells. Apart from in isolated locations, these measures

do not have coherently stronger correlations with floodiness
than seasonal total rainfall (Fig. 3).

The last set of variables we explored included soil mois-
ture and several measures of seasonal rainfall intensity.
Figure 4a shows that in most regions seasonal total rain-
fall is more strongly correlated with floodiness than soil
moisture. In comparison, seasonal rainfall intensity shows
a slightly higher correlation with floodiness across the con-
tinent (Fig. 4b), defined as the total precipitation divided
by the number of rainy days. Similarly, the percent of sea-
sonal rainfall occurring in the top 95th percentile days, here
called the “contribution of extremes”, shows higher correla-
tions in the western and central Africa region (Fig. 4c). Both
of these variables show less variation across Köppen climate
regions, compared to seasonal total rainfall (Fig. 1). Bursti-
ness (Schleiss and Smith, 2016) of a 15-day interamount time
(Fig. 4d) does not show better correlations with floodiness
than does seasonal total rainfall.

It is possible that a combination of these variables would
outperform any of them in isolation, so we also test the com-
bination of three different types of variables that each have
strong correlations with floodiness: (1) 3 days above 99th,
(2) soil moisture, and (3) contribution of extremes. To test
whether a combination of these variables is better able to pre-
dict 50-year return period floodiness, we fit a logistic regres-
sion model for each grid point using these three variables.
Because these variables are correlated with each other in sev-
eral regions, we select the generalized linear model (glm) fit
with the fewest variables that is still within 1 standard error
of the optimal fitted model.

Results of the glm generally confirm the spatial patterns
reflected in the correlation figures above, and indicate that a
combination of these variables could be a useful indicator of
floodiness in many regions. Figure 5 shows that the number
of 3-day events above the 99th percentile was a meaning-
ful contributor when added as a predictor independently, or
in conjunction with another variable, in most of sub-Saharan
Africa. Soil moisture is included as an additional predictor
primarily in southern Africa, while the contribution of ex-
tremes was included primarily in central Africa. A combina-
tion of all three variables was recommended in eastern Africa
and parts of southern Africa, while none of the predictors was
selected as a meaningful contributor for much of western and
central Africa.

4 Conclusions

In the analysis above, we have demonstrated that indica-
tors of floodiness differ widely across the African continent,
using a methodology that can be replicated for other data-
scarce regions to assess the key indicators of flooding. Im-
provements to both the climatology of reanalysis rainfall and
the skill of global hydrological models could further improve
the understanding of predictability of these processes, and
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Figure 2. Correlation of the number of extreme events within a season and floodiness for FPUs in Africa. The top row shows the anomaly
rank correlations between each variable and percentage floodiness at the 5-year return period at the FPU level. The bottom row is the
improvement relative to seasonal total rainfall – locations in blue show a higher anomaly correlation for this variable than for seasonal total
rainfall anomalies. Areas in which seasonal total rainfall has a higher or equal correlation are shown in grey. Note that results are only plotted
for locations where more than 95 % of the boostrapped replicas agree on the sign of the change.
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Figure 3. Same as Fig. 2 for the following variables. (a) Rainy days: number of days with more than 1 mm of rain. (b) Mean wet-spell
length: mean length of consecutive days of rain greater than 1 mm. (c) Median dry-spell length: median length of consecutive dry days.
(d) Dry-spell autocorrelation: Spearman rank lag-1 autocorrelation of successive dry spell lengths. (e) 3-day autocorrelation: Spearman rank
lag-3 autocorrelation of daily rainfall amounts.

we encourage replication of this methodology using obser-
vations to further describe and validate the flood-generating
processes in specific locations.

It is clear that seasonal total rainfall is not a reason-
able proxy for floodiness in most of western Africa, central
Africa, and Madagascar. Large portions of these regions fall
into the “equatorial” Köppen classification, which includes
tropical savannahs. Floodiness in these regions demonstrated
a stronger relationship with measures of the intensity of rain-
fall during a season than in the rest of the continent. In these
regions, the climate services community should reconsider
their association of seasonal total rainfall with flood risk and
flood preparation measures (Braman et al., 2013). When us-
ing forecasts in an operational context, imperfect forecast

skill of the rainfall proxy itself further reduces the usefulness
of this information for flood preparedness.

On the other hand, much of eastern Africa, southern
Africa, and the Sahel tends to show similar patterns in the
dominant indicators of flooding. Seasonal total rainfall had
some of the highest correlations in these regions, as well as
the number of extreme events within a season. There are large
“arid” areas in each of these regions, and these findings are
consistent with studies done in other arid areas. Berghuijs et
al. (2016) found that daily and multi-day rainfall events were
the dominant flood-generating processes for river basins in
arid regions of the United States, similar to the results in
Fig. 2d.
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Figure 4. Same as Fig. 2 but for the following variables. (a) Soil moisture: seasonal average moisture in topsoil. (b) Intensity: total rainfall
divided by the number of rainy days. (c) Contribution of extremes: total rainfall divided by the amount of rain contributed by the top 95th
percentile days. (d) Burstiness 15 day: intermittency measure (Schleiss and Smith, 2016).

To maximize usefulness in these regions, forecasters could
consider simple formatting alternatives to current forecasts
that would provide a better indication of floodiness, such
as replacing tercile forecasts with forecasts of the top per-
centiles of the distribution (Grieser, 2014), and offering ag-
gregate forecasts for river basins or FPUs. The latter could
also lend itself to greater forecast skill than for rainfall itself,
and encourage regional-scale disaster preparedness.

Researchers developing new forecast products should con-
sider several of the predictor variables discussed here. Fore-
casts of the frequency of extreme rainfall events would
likely provide a better indication of floodiness, compared
to seasonal total rainfall forecasts, for much of Sub-Saharan
Africa. Studies have shown the potential predictability of this
variable in several locations (Anderson et al., 2015; Higgins
et al., 2000; Verbist et al., 2010). Seasonal forecasts of soil
moisture could give a useful indication of flood risk in dry
regions of Africa (Fig. 4), and these forecasts are also likely
to have seasonal predictability in areas where they can be
well initialized, notably due to the persistence of soil mois-
ture (Kanamitsu et al., 2002; Koster et al., 2010; Poveda et
al., 2001). This also takes evaporation into account.

Forecasts of rainfall intensity could give a better indication
of flood risk in western and central Africa (Fig. 5). However,
intensity is the least spatially coherent and therefore least
likely to be predictable (Moron et al., 2007). Further research
into the area is merited, as there are a few examples showing
some potential predictability of rainfall intensity (Pineda and
Willems, 2016).

Seasonal skill in forecasting total 3-month rainfall anoma-
lies is varied around the world; the highest skill has been
achieved during ENSO events in areas that have ENSO tele-

Soil moisture 
Contribution of extremes 
Both

Figure 5. Results of optimizing a logistic regression model using
a combination of the high-performing variables considered earlier.
The model predicted whether there was any floodiness at the 50-
year return period by using the following predictors: number of 3-
day events in the 95th percentile (crosses), soil moisture (yellow),
and the contribution of extremes (red). To optimize the model, we
selected the most parsimonious combination of these three predic-
tors that formed a glm that is within 1 standard error of the stan-
dard error that could be achieved by the maximum fit. FPUs that are
plain white showed no value in using any of the predictors, while
locations with colors/symbols show which predictors were retained
in the optimized model, either alone or in combination with other
predictors.

connections (Barnston et al., 2010a; Weisheimer and Palmer,
2014). Given the low correlations we have found here be-
tween floodiness and either seasonal total rainfall or other
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rainfall indicators, forecasts of any of these proxies are un-
likely to provide strong signals of increased risk. However,
there have been several studies using large-scale climate pat-
terns and sea surface temperatures (SSTs) as predictors of
flood risk, most focusing on the role of ENSO in changing
global flood risk (Emerton et al., 2017; Ward et al., 2014,
2016). Further research on using SSTs and other climate pat-
terns to directly forecast changes to flooding is merited, to
explore whether such forecasts would give stronger indica-
tions of change in flood hazard than seasonal climate models
of rainfall.

Ultimately, the most informative forecasts of flood haz-
ard at the seasonal scale could be seasonal streamflow fore-
casts using hydrological models calibrated for individual
river basins (Sahu et al., 2016). While this is more compu-
tationally and resource intensive, investments in better fore-
casts of seasonal flood risk could be of immense use to the
disaster preparedness community.

In their work, disaster managers can support these fore-
casting efforts by better defining the meteorological and hy-
drological variables that relate to disaster. Sharing this infor-
mation with forecasters can inform the development of fore-
cast products that provide specific information about these
“danger levels”, thus better enabling stakeholders to take ap-
propriate preparatory actions. Forecast-based finance initia-
tives are underway globally, with the aim of taking action
and releasing financing proportional to the risk information
in a forecast, before the potential disaster (Coughlan de Perez
et al., 2016). Changes to forecast products to provide clearer
and more targeted risk information can support this process,
and enable humanitarians to better anticipate and prepare for
disasters before they strike.
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